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A B S T R A C T

Continuous monitoring of vegetation indices (VIs) the fraction of absorbed photosynthetically active radiation
(fPAR) and leaf area index (LAI) through satellite remote sensing has advanced our understanding of bio-
sphere–atmosphere interactions. Substantial efforts have been put into monitoring individual variables in the
field, but options to concurrently monitor VIs, fPAR, and LAI in-situ have been lacking. In this paper, we present
the Smart Surface Sensing System (4S), which automatically collects, transfers and processes VIs, fPAR and LAI
data streams. The 4S consists of a microcomputer, controller and camera, a multi-spectral spectrometer built in
with a light-emitting diode (LED) and an internet connection. Lab testing and field observations in a rice paddy
site that experiences wet summer monsoon seasons confirmed the linear response of 4S to light intensities in the
blue, green, red and near-infrared spectral channels, with wide ranging temperatures and humidity having only a
minor impact on 4S throughout the growing season. Applied over an entire rice growing season (day of year
[DOY] 120 - 248), VIs and fPAR from 4S were linearly related to corresponding VIs from a reference spectro-
meter (R2= 0.98; NDVI, R2= 0.96; EVI) and the LAI-2200 instrument (R2 = 0.76), respectively. Integration of
gap fraction-based LAI from LED sensors and a green index from the micro-camera allowed tracking of the
seasonality of green LAI. The continuous and diverse nature of 4S observations highlights its potential for
evaluating satellite remote sensing products. We believe that 4S will be useful for the expansion of ecological
sensing networks across multiple spatial and temporal scales.

1. Introduction

Vegetation indices (VIs), the fraction of absorbed photosynthetically
active radiation (fPAR) and leaf area index (LAI) represent key struc-
tural and functional variables within a canopy (Sellers et al., 1997).
These variables describe light interception by plant canopies (Baldocchi
et al., 1984; Myneni et al., 1987; Ross, 1981), vegetation activity
(Tucker, 1979) and carbon/water fluxes (Baldocchi et al., 2002;
Leuning et al., 1995; Monteith, 1965; Ryu et al., 2011). Satellite remote
sensing provides maps of these variables through space and time, which
help elucidate the response of vegetation to climate change (Jiang et al.,
2017; Myneni et al., 1997).

VIs, fPAR, and LAI have been independently monitored using near-
surface sensors. For example, a rotating hemispherical spectrometer has

been used to monitor VIs in a rice paddy and a deciduous forest
(Motohka et al., 2009; Nagai et al., 2014a). A spectral system in-
tegrating a spectrometer, a pan-tilt unit and a camera was developed to
measure spectral reflectance at different angles from a tower in a
coniferous forest (Hilker et al., 2007). A light-emitting diode (LED) was
used to function as a spectrally selective light detector which measures
spectral reflectance and monitors VIs in a savanna, evergreen and de-
ciduous forests (Ryu et al., 2014, 2010c). Low-cost spectral reflectance
sensors were used to monitor PRI and NDVI of vegetation continuously
(Garrity et al., 2010; Magney et al., 2016). In addition, networked di-
gital cameras and ground-based spectrometers have been used to create
networks for monitoring canopy color and VIs at ecosystem scales
(Gamon et al., 2006; Richardson et al., 2018). To observe fPAR, mul-
tiple upward and downward-facing quantum sensors have been posi-
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tioned above and below a forest canopy (Inoue et al., 2008; Jenkins
et al., 2007). Various sensors have been developed and installed to
monitor LAI, including an upward-facing digital camera (Ryu et al.,
2012) and quantum sensor systems that measure light attenuation
through canopies (Qu et al., 2014a; Yin et al., 2017) as well as photo-
diodes installed at an angle of 57 degrees (Fang et al., 2018;
Raymaekers et al., 2014). However, the continuous and concurrent in-
situ observation of these variables through one instrument has not
previously been attempted.

Quantifying green LAI is important in order to effectively estimate
photosynthesis, but it remains a challenge (Gitelson et al., 2014). In
plants, photosynthesis occurs in green leaves where chlorophyll is found.
In particular, quantifying green LAI is essential to estimating crop pho-
tosynthesis (Gitelson and Gamon, 2015), as yellow leaves and stems may
account for a large part of the total LAI (Fang et al., 2014). Commonly
used optical sensors based on gap fraction theory, such as the LAI-2200
cannot distinguish green leaves from those of other colors (Chen et al.,
1997). Although the downward looking digital images inclined at 57.5
degree were used to monitor green LAI, this method required the use of a
3D plant architecture model (Baret et al., 2010). Therefore, a destructive
method, which requires considerable labor, time and effort, has been
commonly used to quantify green LAI (Huang et al., 2018).

Recent advances in microcomputers and controllers have improved
our ability to quantify VIs, fPAR and LAI by providing the opportunity
to concurrently monitor these measurements in-situ. However, the ac-
cessibility of this continuous observation of biophysical variables has
been limited by high equipment costs and labor requirements for col-
lecting and processing data. A microcomputer containing a micro-
processor is a relatively small and inexpensive device. For example,
Liao et al. (2017) developed a system to monitor the growth of orchids
with an integrated microcomputer and micro-camera. Ferrández-Pastor
et al. (2016) measured humidity and temperature using a micro-
computer. Data processing and transfer can become less time con-
suming and labor intensive when the microcomputer is connected to
Internet (Gressler et al., 2015). A microcontroller, which is much
cheaper than conventional micrometeorological data loggers, converts
the analog signal from the sensors into digital data that can be saved to
the computer and it also controls the timing and frequency of the data’s
acquisition. A recent study quantified the rate of plant growth by using
a commercially available microcontroller to accurately measure string
length changes (Zhen et al., 2017).

Integrating a microcomputer, camera and controller can help the
development of cost-effective canopy monitoring systems. Near-surface
sensors, which have relatively small footprints compared to satellite
pixel sizes or eddy covariance footprints, must be installed in multiple
locations to obtain spatially representative values (Richardson et al.,
2013; Ryu et al., 2012). Recently, researchers have attempted to de-
velop cost-effective spectrometers using photodiodes and LEDs (Bauer
et al., 2014; Garrity et al., 2010; Qu et al., 2014b; Ryu et al., 2010a; Yin
et al., 2017). Although the cost of spectral sensors has decreased, the
complete system including data processing, storage, and sharing is still
not that cost-effective. For example, inexpensive LED sensors were
combined with commercially available and widely used data loggers
and laptops that were much more expensive than the LED sensors (Ryu
et al., 2010a, 2014). Microcomputers and controllers are an inexpensive
alternative for tasks such as data collection, storage, and processing,
typically performed by conventional data loggers and computers.

In this study, we developed a Smart Surface Sensing System (4S) that
concurrently monitors canopy color, VIs, LAI, and fPAR and then auto-
matically collects, transfers, and processes the data. This system consists
of a microcomputer, a microcontroller, a multi-spectral spectrometer built
from an LED, a micro-camera and an Internet connection. In this paper,
we 1) describe the 4S, 2) report its performance in terms of the linear
response to varying light intensities as well as sensitivity to temperature
and humidity, 3) evaluate 4S-derived VIs, fPAR, and LAI data collected in
a rice paddy with data from a set of reference instruments.

2. Materials and methods

2.1. Development of the 4S

The 4S consists of a Raspberry Pi microcomputer (Raspberry Pi
b2module, Raspberry Pi Foundation, Cambridge, UK), Arduino mi-
crocontrollers (Arduino Nano, Arduino, New York, NY, USA), a multi-
spectral spectrometer built from LEDs, a micro-camera (Camera module
v2, Raspberry Pi) and an Internet connection. The Raspberry Pi mi-
crocomputer controls the automated workflow chain, connecting all
components.

To measure spectral intensity with 4S, we upgraded the LED circuit
used by Ryu et al. (2010a) by changing the power supply, as the mi-
crocontroller provided a more stable supply of electricity to the am-
plifier (op-amp LTC1060). We tested and selected LEDs that could de-
tect light at the desired wavelengths (see section 2.2) and then
connected the LED, amplifier, capacitor, and Arduino microcontroller
together. When the LED detects light, electrons are excited, which alters
the voltage flowing through the amplifier and capacitor and then the
Arduino microcontroller translates the analog signal to a digital number
(DN). The Raspberry Pi microcomputer collects images from the micro-
camera and spectral intensity data from the LED. Data are then trans-
ferred to a remote server using file transfer protocol (FTP; Fig. 1). The
microcomputer has four USB ports, so we can combine up to four mi-
crocontrollers. In addition, the microcontroller can control two LED
circuits simultaneously. Therefore, although only one LED circuit is
connected in the (Fig. 2), up to 8 LED circuits can be coupled to the
microcomputer. The list and price of parts appear in Appendix A. One
pair of 4S costs $218.8 (as of Aug. 2018).

2.2. Calibrating and evaluating the LED

To select an LED with spectral wavebands in the red, green, blue and
near infrared (NIR) domains matching the MODIS spectral bands (http://
modis-sr.ltdri.org/guide/MOD09_UserGuide_v1.4.pdf), we tested a wide
range of LEDs using a solar cell chamber (K3100 solar cell IPCE mea-
surement system, Mc Science, Suwon, Korea), which emits spectrally

Fig. 1. Automated workflow of the Smart Surface Sensing System (4S).
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selected light. We determined LED voltages that responded to the solar
cell chamber with wavelengths of 300–700 nm at 2-nm intervals and
700–900 nm at 50-nm intervals, thereby enabling us to quantify the
spectral response of each LED (Table 1). From more than five available
wavelengths in commercial LEDs, we selected LEDs based on their spec-
tral responses that were most similar to MODIS wavelength range in the
four channels. To ensure that incoming light was fully diffused inside the
LED head enclosure, we covered the LED sensors with Teflon to measure
spectral irradiance (Fig. 2).

To calibrate the LED sensors, we compared the voltages produced by
the LEDs to the spectral irradiance readings from a spectrometer
(FieldSpec 4 Wide-Res Field Spectroradiometer, ASD, Inc., Boulder, CO,
USA) across a wide range of radiation intensities. On a day with clear
skies (DOY 223 in 2016), we installed LEDs and the spectrometer with
the fiber optics covered by a cosine corrector, together on an open
rooftop at Seoul National University in order to minimize the effects of
shadows from surrounding structures. The sensors were placed the ze-
nith. We collected data throughout the day under solar irradiance
ranging from 60 to 1000W m−2. We extracted spectral irradiance va-
lues from the spectrometer over spectral wavelength ranges corre-
sponding to the Full Width at Half-Maximum (FWHM) of each LED and
averaged the values to calibrate the LED sensors. Digital numbers from
4S LED sensors exhibited strong linear relationships with spectral ir-
radiance values from the spectrometer in the blue, green, red, and NIR
bands (Fig. 3). We found that the linear relationships were tightly
consistent over the whole growing season in the rice paddy site
(Appendix B).

To monitor fPAR, we combined red, green and blue LEDs to de-
termine PAR (Eq. 1). We applied a linear regression model to the red,
green, and blue LED readings (DOY 179 to 185 in 2016, every 30min)
to estimate PAR. This period included cloudy and clear sky conditions
to compare PAR ranging from 0 to 2000 umol m−2 s-1. After calibrating

three regression coefficients against a reference PAR quantum sensor
(PQS 1; Kipp & Zonen B.V., Delft, The Netherlands) (Eq. 1), we obtained
a strong linear relationship (R2=0.99, Bias= 3.8%, RMSE=11%;
Fig. 4). In addition, when we compared the readings of the PAR sensor
and 4S across the entire growing season in the rice paddy site, we
confirmed that their relationships were highly linear (R2>0.97) with
little bias (relative bias< 6%).

= × + × + ×PAR red green blue (1)

where α, β, and γ are parameters, and red, green, and blue are LED
band readings.

2.3. Testing the 4S in a rice paddy field

2.3.1. Site description
Our site is located in Cheorwon (38.2013 °N; 127.2507 °E), the

center of the Korean Penisula, is an intermittently irrigated rice paddy
that is also part of the KoFlux (Yang et al., 2018). The annual max-
imum, minimum, mean air temperature and total precipitation (for
2000–2014) were 35.3 °C, –12.3 °C, 10.2 °C, and 1391mm, respectively
(Korean Meteorological Administration weather station data collected
8 km from the study site). The site is under a shared management re-
gime and covers an area of 3528m2 (98×36m). We installed an iron
deck that was 0.8 m high and 9.5 m long in the rice paddy (Fig. 5). The
species of rice cultivated at this site were Oryza sativa L and cv. Odae
1ho. The rice canopy was continuously monitored from May to Sep-
tember 2016. Rice seedlings were grown in a greenhouse for twelve
days, transplanted to the field on DOY 120, and then harvested on DOY
248. Stem density was 17 ± 1.5 plant m−2 (mean±95% confidence
interval (CI)).

2.3.2. 4S installation, data collection, and data processing
The 4S was installed on three horizontal booms 2m above the

ground. One LED sensor was oriented to the zenith, and the other to-
ward the nadir (Fig. 5b). We cross-calibrated each spectral band
reading between the upward and downward LED sensors in the field
before transplantation. By attaching Teflon to both the upward- and
downward-facing sensors, we measured spectral irradiance in both di-
rections, obtaining a bi-hemispheric spectral reflectance. We calculated
the normalized difference the vegetation index (NDVI) and enhanced
the vegetation index (EVI) using 4S-derived spectral reflectance data
(Huete et al., 2002; Tucker, 1979):

=
+

NDVI NIR red
NIR red (2)

= ×
+ × × +

EVI G NIR red
NIR C red C blue L

( )
1 2 (3)

where represents the spectral reflectance, G represents a gain factor,
C1 and C2 represent the coefficients of the aerosol resistance term, and L
represents the soil adjustment factor. We followed the MODIS EVI al-
gorithm, where L=1, C1 = 6, C2=7.5, and G=2.5 (Huete et al.,
2002; Jiang et al., 2008). We collected LED data with 9600 bps and we
saved the average of one minute data using the microcomputer. NDVI
and EVI were computed every minute and averaged over half-hourly.
To compare 4S and Jaz spectrometer that had a wide footprint (180 °),
we averaged the data from the four pairs of LEDs.

To quantify fPAR, incoming, reflected, and transmitted PAR (Eq.
(4)), we used three sets of LED sensors installed on the iron deck. In-
coming and reflected PAR were monitored from the same three booms
as NDVI and EVI (Fig. 5b). To measure transmitted PAR over the in-
termittently irrigated rice paddy, an LED sensor was fixed, with each
4S, on a Styrofoam float that moved vertically with the water table

Fig. 2. The Smart Surface Sensing System (4S). All components are connected,
and the microcomputer controls the automated data workflow.

Table 1
Light-emitting diode (LED) sensor specifications compared to MODIS.

Spectral band Peak
sensitivity

Full Width at Half-Maximum
(FWHM)

MODIS

Blue 412 nm 59 nm 459–479 nm
Green 560 nm 42 nm 545–565 nm
Red 656 nm 44 nm 620–670 nm
Near-infrared 850 nm 100 nm 841–876 nm

J. Kim et al. Agricultural and Forest Meteorology 264 (2019) 164–177

166



inside a square vertical steel frame. If no water was present, it rested on
the soil surface. LED sensors were installed under the canopy after DOY
167 because the height of the rice canopy was smaller than the height
of the sensor enclosure. Data was used only from 08:00 to 18:00 to

avoid low-light conditions. LED data was collected in 1-minute intervals
and the half-hourly fPAR was averaged using data from all three sets.
The fPAR was calculated as shown below (Eq. (4)). In addition, we
installed a quantum sensor to measure total PAR and diffuse PAR
(PARdif) at 7m height in the flux tower. To measure PARdif, a rotating
wing was installed to create shadows that blocked the direct beam in-
cident on the quantum sensor to separate beam and diffuse components
(Michalsky et al., 1986; Michalsky, 1988).

=fPAR PAR PAR PAR
PAR

( )inc out transm

inc (4)

where PARinc is incoming PAR, PARout is outgoing PAR, and PARtransm is
PAR transmitted through the canopy.

To quantify LAI of the rice paddy, we measured the gap fraction
(GF) of incoming spectral irradiance from the blue band of the LED
sensors above and below the canopy, as the blue band minimizes the
scattering effect of canopy (Brusa and Bunker, 2014; Welles and
Norman, 1991). To reduce noise in daily LAI time series, data from
diffuse sky conditions without sun flecks were chosen, which leads to a
heterogeneous radiation field. Sky conditions were categorized as dif-
fuse when the ratio of PARdif to PAR was more than 75%.

=
×

LAI ln GF
k

( )¯

e (5)

where k is the extinction coefficient under diffuse sky conditions (see
Appendix C) and Ωe is the element clumping index. To estimate
hemispheric Ωe under diffuse sky conditions, clear sky days were first
defined as those with a daily mean ratio of PARdif to PAR below 50%.

Fig. 3. Calibration of Light-Emitting Diodes (LEDs) against an ASD spectrometer across a wide range of solar radiation conditions (60 – 1000 W m-2) on a day with
clear skies. The red lines indicate linear regressions.

Fig. 4. Linear relationship between the Smart Surface Sensing System (4S)
Photosynthetically Active Radiation (PAR) estimates and those of a reference
PAR sensor.
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Next, measurements were taken of paired samples of GF with solar
zenith angles at 15° intervals from 0 to 90°in the morning and after-
noon. Finally, the Ωe corresponding to each angle was calculated using

the ratio of ln GF[ ( )]
¯

to ln GF[ ( )]
¯

, where θ is the viewing zenith angle
(Lang and Yueqin, 1986; Ryu et al., 2010b). Hemispheric Ωe was esti-
mated by multiplying Ωe with the weighting factor (sinθcosθ) for each
15° intervals. The over bar indicates averaged data from the three sets.

To convert LED LAI to green LAI (LAIg), the Greenness Index (GI)
was quantified using three digital cameras on the iron deck (Eq. (6)).
The micro-cameras installed on the booms 2m above the ground
(Fig. 5b) viewed the canopy at a 57° angle. To capture images that were
not affected by shadows from the structure, the microcomputer was
programmed to take images at 06:00, 12:00, and 18:00 each day at
their respective location and we covered the mask to see only rice ca-
nopy (Appendix D). GI was calculated as in Eq. (6)(Nagai et al., 2014b;
Richardson et al., 2007; Sonnentag et al., 2012). After calculating GI for
each image, the highest GI was selected for each day from each plot to
minimize noise. To estimate LAIg, the normalized GI was multiplied by
LAI (Eq. (7)), starting on DOY 209, when GI began to decrease.

=
+ +

GI
DN

DN DN DN( )
g

r g b (6)

where DNr is red DN, DNg is green DN, and DNb is blue DN.

= ×LAI LAI normalized GIg (7)

2.3.3. Reference data collection
To evaluate 4S-derived LAI and LAIg, we collected six rice hills

around the tower randomly every two weeks (Huang et al., 2018). The
rice hill is a bundle unit of rice when it is planted. First, leaves from
three rice hills were scanned and weighed in the laboratory. The leaves
were attached to a white board and scanned images were created and
saved at 300 dpi in JPEG format using a CanonScan LiDE 120 laser
scanner. To analyze these images, we differentiated between green and
yellow leaves by extracting the blue channel from the JPEG image using
MATLAB. We visualized each blue-channel image and applied different
thresholds. The remaining three hills were dried at 80 °C for 48 h and
we measured their weight to estimate the LAI based on leaf mass per
unit area. The ratio of green leaves to total leaves was then calculated
from three samples and this ratio was applied to the remaining three
samples. Thus, we calculated destructive total LAI (LAIt) as well as
destructive green LAI (LAIg). During the reproductive and ripening
stages, we measured grain weight and hemi-surface grain area (Chen
and Black, 1992; Lang, 1987).

To evaluate 4S-derived VIs, a Jaz spectrometer was installed on the
tower (Ocean Optics, Dunedin, FL, USA) at a height of 5m. The Jaz
spectrometer, which covers a spectral range of 350 to 1033 nm at 1-nm
resolution, was kept in a temperature-controlled enclosure (400 BTU
(DC); EIC Solutions, Warminster, PA, USA) at 23 °C with a desiccant to
maintain dry conditions, as variations in temperature and humidity
could influence the performance of the CCD array in the spectrometer
(Price et al., 2014). The spectrometer was connected to two fibers
covered with a cosine corrector to measure spectral irradiance. We
calibrated the Jaz spectrometer monthly with an HL-2000-CAL light
source (Ocean Optics, Dunedin, FL, USA). The spectral reflectance data
that was recorded by the Jaz spectrometer was saved at 1-min intervals.
For comparison with the daily pattern of NDVI and EVI values from the
Jaz spectrometer and 4S, we utilized noontime spectral reflectance
values from the Jaz spectrometer to calculate NDVI and EVI.

The LAI-2200 Plant Canopy Analyzer (LI-COR, Lincoln, NE, USA)
was used to evaluate 4S fPAR and LAI estimates. We randomly collected
LAI-2200 data at more than 25 points every two weeks before noon. At
each point, we measured incoming and reflected light above the canopy
and transmitted light below the canopy. For measurement below the
canopy, we held the LAI-2200 less than 5 cm above the soil or water
surface. We used a 90° view cap to reduce noise from the operator. The
weight factor was multiplied by five ring widths (7°= 0.041,
23°= 0.131, 38°= 0.201, 53°= 0.290, and 68°= 0.337) to calculate
the hemispheric light intensity and then fPAR was quantified using Eq.
4. To quantify LAI with scattering correction, we used FV2200 software
(LI-COR, Lincoln, NE, USA) with data collected from the LAI-2200
(Kobayashi et al., 2013).

2.3.4. Satellite remote sensing data
We compared field observations to satellite data with different

spatial resolutions, including MODIS Terra, MODIS Aqua, Landsat 8,
and Sentinel-2 Level 2 A images. We used MODIS surface reflectance
products (MOD09GQ and MYD09GQ), which have a daily interval and
250-m resolution. We only used data that was classified as (a) ideal
quality, i.e., “MODLAND QA bits” (00) in the MOD09GQ QA descrip-
tion; (b) cloud free in “cloud state” (00) and “pixel adjacent to cloud”
(0); and (c) low or average aerosol quantity, i.e., “aerosol quantity” (01
or 10) in the 1-km QA of MOD09GA products (Ryu et al., 2014; Zhao
and Running, 2010). For the Landsat 8 imagery (30-m resolution, 16-

Fig. 5. (a) Site map. The white parallelogram marks the boundary of a MODIS
250-m pixel. The yellow rectangle is the monitored rice paddy site and the blue
dots represent the different locations of the Smart Surface Sensing System (4S).
(b) Deployment of 4S in the field. A total of four 4S sets, each with a reference
spectrometer, were installed on the site.
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day revisit time), we downloaded surface reflectance products and re-
moved images with cloud cover above 30%, which was visually con-
firmed for each image. We removed images with cloud cover using a
similar processing protocol to the Landsat 8 post-processing, when
dealing with Sentinel-2 (10-m resolution, 10-day revisit time) imagery.
For atmospheric correction, terrain correction and cirrus correction of
Sentinel-2 A Level 1C (L1C) imagery, we applied the Sen2cor (Version
2.3.0) function in Sentinel Application Platform (SNAP) software and
generated Level 2 A (L2 A) data.

3. Results and discussion

3.1. General performance

4S achieved a high rate of data acquisition throughout the growing
season including the wet monsoon summer period. We collected LED
data with 9600 bps and we saved the average of one minute data using
the microcomputer. The half-hourly data was calculated using the 1-
minute interval data in the lab. To quantify how well 4S collected data,
we used the fraction of days for which data was available during the
growing season (see Table 2). The LEDs and camera were able to collect
data for 76% and 80% of days in the growing season, respectively.
Unexpected data gaps occurred due to an interruption of the electricity
supply caused by lightning, water leakage into the 4S and a mal-
functioning of the SD memory card. To overcome these issues, the
status of the 4S was checked every day via the internet, and if any
problem was detected, we returned to the site as soon as possible to fix
it.

The LED sensors worked well in a broad range of temperature
(10–35 °C, Fig. 6 (a)) and relative humidity (20–100%, Fig. 6 (b)).
When we compared the incoming DN from the Jaz spectrometer
(840–860 nm) in a temperature controlled enclosure and the NIR band
of the LED sensor, 4S exhibited a linear relationship with the Jaz
spectrometer (R2= 0.98). The strong linear relationship between Jaz
and LED readings over the entire growing season confirmed that our

inexpensive 4S LED sensors (Appendix A) are robust and reliable in-
struments for monitoring canopy structure and function under a wide
range of environmental conditions.

3.2. Seasonal variations in VIs, fPAR and LAI

The 4S LED sensors and Jaz spectrometer produced well matched VI
values during the growing season (R2> 0.96, relative bias< 3%;
Fig. 7). NDVI and EVI values increased after DOY 140. During DOY
160–209, NDVI was nearly saturated, whereas EVI continued to in-
crease, consistent with results from a previous study (Mutanga and
Skidmore, 2004). From the beginning of the ripening stage (DOY 209)
and onward, both NDVI and EVI decreased (Fig. 7). The NDVI and EVI
values dropped suddenly after harvest (DOY 248). VI values from 4S
and Jaz spectrometer differed slightly around the transplanting date
(Fig. 7b and d). We assume that spatially heterogeneous water turbidity
(Motohka et al., 2009) might lead different VI values between the two
sensors because of their different footprints.

4S-derived fPAR exhibited magnitude and seasonal patterns con-
sistent with LAI-2200-derived fPAR (R2=0.76, Bias= 0.014,
RMSE=0.06, Fig. 8). Three 4S-derived fPAR datasets were compared
to> 25 points of corresponding estimates from the LAI-2200. Before
DOY 167, we could not calculate fPAR because the depth of sensor
enclosure was larger than the height of the rice canopy above water
surface. Just after the 4S fPAR system was installed (DOY 167), dis-
crepancies in fPAR between the 4S and LAI-2200 were apparent. We
assume that the methodological difference in data collection between
LAI-2200 and 4S could form a bias. We collected more than 25 points of
fPAR data over the rice paddy using the LAI-2200, whereas the 4S was
fixed at three plots to monitor fPAR. After DOY 180, LAI-2200 and 4S
showed consistent fPAR values.

4S LAI and LAIg were similar in magnitude and seasonal pattern to
the LAI reference values, such as LAIt, LAIg by destructive method and
LAI measured by LAI-2200 during the growing season (Fig. 9). Among
reference LAI, the LAI derived by LAI-2200 had the highest R2 value
with 4S LAI over the whole growing season (R2=0.71). The timing and
magnitude of the maximum LAI value shows that LAIt was 5.9 on DOY
190, LAIg was 5.7 on DOY 190, LAI-2200 LAI was 5.9 on DOY 201, and
4S LAI and LAIg were 5.11 on DOY 201. During the ripening stage, 4S
LAI showed a similar magnitude to LAI-2200 LAI (bias = –2%),
whereas 4S LAI was overestimated compared to LAIt (bias= 25%) and
destructive LAIg (bias= 69%). When we compared 4S LAIg to reference
LAI during the ripening stage, the relative bias was lowest with LAIg

Table 2
Percentage of dates during the growing season that were monitored by 4S.

System 1 System 2 System 3 On tower Average

LEDs 63 % 87 % 79 % 74 % 76%
57 °Cameras 73 % 73 % 86 % 88 % 80%

Fig. 6. Relationships between the Smart Surface Sensing System (4S) and Jaz spectrometer under a broad range of (a) temperature and (b) relative humidity,
collected in the rice paddy site over the whole growing season.
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(5%) and greatest with LAI-2200 LAI (–33%) (Fig. 10), indicating that
4S-based LAIg tracked the seasonality of LAIg using destructive method.
Substantial uncertainty in destructive LAI (Fig. 9) could be explained by
spatial heterogeneity of sampled LAI and imperfect leaf area estimates
from scanned images.

Image-based GI allows estimation of LAIg. Optical sensors, such as

LED and LAI-2200, overestimated LAIg during the ripening stage be-
cause the sensors measured not only green leaves but also yellow
leaves, stems, and grains. To estimate LAIg, we used GI, which can track
changes in canopy colors (Keenan et al., 2014). We found that nor-
malized GI mirrored the increase in the grain and yellow leaf area
fractions during the senescence period (Fig. 10). We tested a range of

Fig. 7. Comparison of the Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI) observed at midday between the Smart Surface
Sensing System (4S) and a Jaz spectrometer. We averaged the observed EVI and NDVI in four 4S. Graphs (a) and (c) illustrate scatter plots of results for the 4S and Jaz
spectrometer. Graphs (b) and (d) represent seasonal variations in NDVI and EVI observed by the 4S and Jaz spectrometer.

Fig. 8. (a) Scatterplot of the Fraction of absorbed Photosynthetically Active Radiation (fPAR) observed by the Smart Surface Sensing System (4S) and the LAI-2200.
Red line indicates linear regression between the 4S and LAI-2200 data. Graph (b) represents time series of fPAR from the 4S and LAI-2200. Error bars indicate 95% CI.
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different green indices from red, green and blue channels, and found
the GI performed best in tracking green leaf fraction (Eq. (6)). We also
tested if the Jaz spectrometer could track the green leaf fraction, but we
learned that the spectrometer signal was influenced by background
elements such as soil and other standing structure (Ide et al., 2016).
However, 57 ° images taken from the 4S camera mostly captured the
upper canopy with little influence of background elements. We believe
continuously tracking LAIg will result in more constrained estimates of
GPP (Gitelson et al., 2014; Leuning et al., 1995). The fraction of LAIg to
LAIt allows us to infer the green fPAR (Weiss et al., 2004). It was re-
ported that green fPAR can be used to better estimate gross primary
production in maize and soybean (Gitelson et al., 2014; Zhang et al.,
2014) through quantification of light use efficiency of green leaves
(Gitelson and Gamon, 2015).

Our assumption of the constant k and Ωe over the growing season
could lead to biased estimates of 4S LAI (Eq. (5)). It is apparent that 4S
LAI tends to be lower than other LAI values up to DOY 200 (Fig. 9). A
previous study reported that k varied among the phenological stages of

rice, due to the changes in the leaf angle distribution (Casanova et al.,
1998). In our rice paddy site, however, the mean leaf angle was
manually measured using a levelled digital camera (Ryu et al., 2010c)
that did not vary much over the season (50–70°, Appendix C). In a
previous study, Ωe also showed seasonal variation, gradually decreasing
from the transplant period to the peak of the growing season and then
rising again prior to the harvest (Fang et al., 2014). We found a small
seasonal variation in Ωe from the LED sensor and we could confirm that
the apparent Ωe from LAI-2200 with a 90° view cap and LED-based Ωe
falls within a similar range (0.88–0.95). Although the combined var-
iations in k and Ωe might influence 4S LAI estimates considerably, they
were not detectable within the limits of our current system.

3.3. Implications for evaluating satellite remote sensing data

Continuous observation of NDVI with the 4S offered more insightful
information when compared to remote sensing satellite-based NDVI.
The 4S data set was less influenced by atmospheric conditions and
clouds than satellites are, leading to fewer gaps in 4S data (Fig. 11). On
average, 4S only missed 28 days of data during the 125-day growing
season (Table 2). In contrast, the high-resolution remote sensing sa-
tellites Sentinel-2 and Landsat only captured six and two scenes, re-
spectively, with good quality. Daily observation of MODIS Terra and
Aqua contained 20% and 16% cloud-free data during the growing
season. A previous study also reported that over 80% of MODIS data in
regions with a monsoon climate, were affected by clouds. Therefore,
combining multiple sources of satellite data is one possible solution to
avoid cloud contamination (Motohka et al., 2009). It is now possible to
use constellations of CubeSat to monitor land surface processes daily at
3- to 5-m resolutions (Houborg and McCabe, 2018). A ground-based
spectral sensing network such as the 4S will be instrumental in testing
and calibrating CubeSat surface reflectance data, which is prone to
errors due to low radiometric qualities as well as a lack of consistency
across the different sensor readings.

Continuous observation of NDVI at the plot scale demonstrated that
high-spatial-resolution satellite remote sensing makes more accurate
observations than does low-spatial-resolution satellite remote sensing.
The 4S agreed best with Sentinel-2, the remote sensing dataset with the
highest spatial resolution (R2=0.99, relative bias= 3%), whereas
MODIS Terra exhibited lower R2 and higher bias (R2= 0.84, relative
bias= 11%). We compared the MODIS NDVI value with the average
value of Sentinel-2 NDVI pixels in the MODIS pixel that was included
our study plot (Fig. 5a) (R2=0.91, relative bias= 15%). The sub-
stantial bias (15%) measured indicates that we need to perform a ca-
libration when combining Sentinel-2 and MODIS data (D’Odorico et al.,
2013), which requires in-situ reference data. In addition, we found that
the NDVI of the MODIS pixel tended to be overestimated after the
harvest period, possibly due to the presence of four differently managed
rice patches within the MODIS pixel. The 4S could serve as a high-
resolution reference sensor in both space and time, playing an im-
portant role in the scaling of land surface fluxes at larger scales, by
merging satellite images using multiple resolutions.

3.4. Opportunities

The 4S consists of relatively low-cost components that can be easily
replicated and replaced (refer to Appendix A). Unexpected issues such as
natural disasters in the field can lead to difficulty in collecting continuous
data using near-surface remote sensors (Richardson et al., 2013). The best
way to respond to such disturbances is to replace the sensor immediately.
Low-cost sensors can reduce the burden related to securing sufficient spare
sensors, which can be used to quickly replace sensors in the field. In

Fig. 9. Comparison of the Leaf Area Index (LAI) and green LAI (LAI g) esti-
mated using the Smart Surface Sensing System (4S) with reference LAI, in-
cluding destructive green LAI (LAIg), destructive total LAI (LAIt), and LAI-
2200-derived LAI (LAI). The destructive LAI and LAI include 95% CI. To
compute 4S LAIg, we multiplied 4S LAI by the normalized greenness index (GI)
when GI began to decrease.

Fig. 10. The comparison of the Normalized Difference Vegetation Index (NDVI)
and the fraction of absorbed Photosynthetically Active Radiation (fPAR) with
the percentage of grain and yellow leaves. The dashed lines indicate trans-
planting and harvesting dates. As the grain began to form, fPAR remained
constant, while NDVI decreased. To avoid overlapping bars, we used a 1-day
time lag for displaying percentages of grains and yellow leaves.
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addition, low-cost sensors provide the opportunity to install a larger
number of sensors. Deployment of multiple sensors provides the potential
to monitor variations in vegetation from plot to the regional scales (Qu
et al., 2014b), and these sensors may also be installed in multiple layers to
assess vertical canopy structure and functions (Ryu et al., 2014).

4S has the advantage of directly observing fPAR, VI, and LAI si-
multaneously. It has been common practice to infer one variable from
the others. For example, a combination of PAR reflectance and short-
wave reflectance was used as a proxy for NDVI (Rankine et al., 2017;

Wilson and Meyers, 2007). LAI has been inferred from NDVI readings,
based on their empirical relationships (Sellers, 1985; Yin et al., 2017)
and fPAR was inferred from NDVI by assuming that their relationship is
linear (Asrar et al., 1984; Sims et al., 2006) or from reflectance of
specific wavelengths (Inoue et al., 2008). These empirical relationships
are prone to errors. For example, we tested the relationships between
fPAR and NDVI under different LAI and sky conditions (Fig. 12) and it
was evident that their relationships varied with these conditions. In all
four cases, NDVI was fairly constant around 0.8, while fPAR varied

Fig. 11. Comparison of normalized difference vegetation index (NDVI) observed using the Smart Surface Sensing System (4S) and satellite data at different re-
solutions. From each satellite image, only a single pixel that includes the tower was selected.

Fig. 12. Comparison of the diurnal patterns of the observed fraction of absorbed Photosynthetically Active Radiation (fPAR) with the Normalized Difference
Vegetation Index (NDVI) on a clear and cloudy day. We averaged the observed fPAR and NDVI in three 4S sets (Fig. 5).
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substantially in each case. These findings challenge the empirical model
built upon a linear relationship between fPAR and NDVI.

The 4S camera can save images in a raw format, allowing better
quantification of the canopy structure. The JPEG format, which is
commonly used, has a non-linear relationship with light intensity be-
cause of gamma correction (Cescatti, 2007). However, the raw format
shows a linear response to the intensity of light, so we can use it to
quantify light intensity (Lang et al., 2010; Mullikin et al., 1994). In
addition, the raw format stores the original image, providing greater bit
depth resolution compared with JPEG format (Hwang et al., 2016;
Macfarlane et al., 2014). We tested the response of the 4S DN camera
against light intensity and confirmed their linear relationship
(Appendix E). The dense canopy (LAI ∼6) and oblique view angle (57°)
in this study did not allow us to classify raw image pixels into vegeta-
tion and soil at the rice paddy site. We believe that the 4S camera has
the potential to monitor gap fractions using raw images using a sky
background, which has been tested across diverse sky and canopy
structure conditions (Hwang et al., 2016).

4. Conclusion

There is a pressing need for the development of an inexpensive near-
surface sensing network to concurrently monitor canopy structure and
to function in multiple locations and across multiple biomes. Here, we
developed a Smart Surface Sensing System (4S), which integrates an
LED sensor, micro-camera, microcontroller and internet module to
concurrently monitor VIs, fPAR, and LAI. Although the individual ele-
ments of the 4S are not new, integrating them into one system has al-
lowed us to achieve an inexpensive yet reliable near-surface remote
sensing system that monitors both canopy structure and functions

simultaneously. Multi-channel LED sensors displayed a linear response
to light intensity in the lab and were not sensitive to a range of tem-
perature and humidity conditions in the field. We installed the 4S in a
rice paddy site for the period of an entire growing season. We confirmed
that the performance of the 4S was on par with that of Jaz spectro-
meters (VIs), LAI-2200 (fPAR and LAI) and destructive LAI (LAIt and
LAIg) estimates. In particular, integrating gap fraction-based LAI esti-
mates from LED sensors using a GI from the digital camera allowed for
the tracking of seasonal variations in green LAI, which is an essential
variable for monitoring crop growth. Furthermore, we found that 4S
could be useful for evaluating satellite remote sensing products. We
expect that the 4S will advance ecological sensing network research on
multiple scales. All source codes and hardware information for 4S are
open to public via https://github.com/Kinznice/Smart-Surface-
Sensing-System.
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Appendix A. List of components. Prices as of Aug. 2018

Item Q’ty Unit price

Circuit PCB board 2 $ 10.30
NIR band LED OP296B 6 $ 1.70
Red band LED SSL-LX5093SRD/D 6 $ 1.70
Green band LED Any vendor 6 $ 1.70
Blue band LED YK 3.0mm Blue Lamps 6 $ 1.70
Amplifier LTC1050CN8#PBF 12 $ 47.20
Amplifier holder IM120807005 12 $ 15.80
Microcontroller Arduino Nano 2 $ 9.80
Microcontroller socket Single 1× 15

Straight (2.54mm)
3 $ 0.60

Cable NT-IDC 6 pin
cable (200mm)

2 $ 1.90

Cable connector Dual 2× 3pin
Straight (2.54mm)

2 $ 0.60

Microcomputer Raspberry pi 2 1 $ 38.60
Micro-camera RGB V2

8 Megapixel
1 $ 26.40

Resistance 10MΩ,1MΩ,0.67MΩ – 12 $ 0.75
Micro SD card 16GB SanDisk 1 $ 3.77
For Structure Glass 1 $ 2.82

Teflon 1 $ 1.41
Aluminum boom 1 $ 23.54
U bolt/nut 1 $ 14.12
Case 1 $ 14.12

Sum $ 218.80
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Appendix B. Testing linear relationships of 4S against light intensity with time

See Fig. A1

Appendix C. Extinction coefficient

We mainly followed the method of Ryu et al. (2014) to compute the extinction coefficient and clumping index in diffuse sky conditions. The
extinction coefficient (k) depends on the leaf angle distribution function and the viewing zenith angle. We quantified leaf inclination angles using a
leveled photographic method (Ryu et al., 2010c). During the 2017 growing season, we visited the rice paddy site every 10 days and randomly
selected five hills. We removed each hill from the rice paddy and captured more than five pictures in the horizontal direction. In the lab, we only
selected leaves indicated as lines in the images (Ryu et al., 2010c) and measured the angle between the leaf surface and its zenith for more than 250
leaves using ImageJ software (Ryu et al., 2014)(ImageJ; http://rsbweb.nih.gov/ij/). Mean leaf angles for each date in the growing season did not
vary greatly (55 ± 1°, mean±95% CI). Therefore, we used all the values of leaf inclination angles observed during the growing season to calculate
the probability density function of the leaf inclination angles, characterized using a two-parameter beta-distribution function (Goel and Strebel,
1984). We computed the G-function () to determine the extinction coefficient (Ryu et al., 2010c). Using Eq. A1 from Ryu et al. (2014) with input LAI
of 2–7, we quantified k(θ) as 0.7 ± 0.017 (mean± 95% CI).

Fig. A1. Comparison of Digital Numbers (DN) between the reference spectrometer (Jaz) and 4S for both zenith directions. Half-hourly data during 0800 hh to
1600 hh between day of year (DOY) 166 and 262 were presented.
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Appendix D. 4S micro-camera images

See Fig. A2

Appendix E. Testing the linear response of digital numbers in the 4S micro-camera

In order to evaluate the linear response of the micro-camera-to-light intensities, we compared raw DN divided by the shutter speed of the micro-
camera to the spectral irradiance readings from a spectrometer (FieldSpec 4 Wide-Res Field Spectroradiometer, ASD, Inc., Boulder, CO, USA) across a
wide range of radiation intensities. On a day with clear skies (DOY 223 in 2016), we installed a micro-camera covered by Teflon and the spec-
trometer, with its fiber optics covered by a cosine corrector, alongside each other on a rooftop in order to minimize the effect of shadows from
surrounding structures. We then oriented both sensors to the zenith. We collected data at 10-minute intervals throughout the day under solar
irradiances ranging from 60 to 1000W m−2. We extracted spectral irradiance values from the spectrometer at spectral ranges that corresponded to
the peak values in each band of the camera (blue: 412 nm, green: 560 nm, red: 656 nm). The RAW DN divided by shutter speed of the micro-camera
showed strong linear relationships with spectral irradiance from the spectrometer in the blue, green, and red bands (Fig. A3).

Fig. A2. Seasonal variations of phenology from the images of 4S micro-camera. The red circles indicate the Region Of Interest (ROI) for extracting Greenness Index
(GI).
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